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a b s t r a c t

In a recent work, the authors provided the first-ever characterization of the values bm(n)
modulomwhere bm(n) is the number of (unrestricted)m-ary partitions of the integer n and
m ≥ 2 is a fixed integer. That characterization proved to be quite elegant and relied only on
the base m representation of n. Since then, the authors have been motivated to consider a
specific restricted m-ary partition function, namely cm(n), the number of m-ary partitions
ofnwhere there are no ‘‘gaps’’ in the parts. (That is to say, ifmi is a part in a partition counted
by cm(n), and i is a positive integer, then mi−1 must also be a part in the partition.) Using
tools similar to those utilized in the aforementioned work on bm(n), we prove the first-
ever characterization of cm(n)modulom. As with the work related to bm(n)modulom, this
characterization of cm(n) modulom is also based solely on the basem representation of n.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this note, we will focus our attention on congruence properties for the partition functions which enumerate restricted
integer partitions known as m-ary partitions. These are partitions of an integer n wherein each part is a power of a fixed
integerm ≥ 2. Throughout this note, we will let bm(n) denote the number ofm-ary partitions of n.

As an example, note that there are five 3-ary partitions of n = 9:

9, 3 + 3 + 3, 3 + 3 + 1 + 1 + 1,
3 + 1 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.

Thus, b3(9) = 5.
In the late 1960s, Churchhouse [5,6] initiated the study of congruence properties of binary partitions (m-ary partitions

withm = 2).Withinmonths, othermathematicians proved Churchhouse’s conjectures and proved natural extensions of his
results. These included Rødseth [9] who extended Churchhouse’s results to include the functions bp(n)where p is any prime
as well as Andrews [1] and Gupta [7,8] who proved that corresponding results also held for bm(n) where m could be any
integer greater than 1. As part of an infinite family of results, these authors proved that, for anym ≥ 2 and any nonnegative
integer n, bm(m(mn − 1)) ≡ 0 (mod m).

Quite recently, the authors [3] provided the following mod m characterization of bm(mn) relying solely on the base m
representation of n:
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Theorem 1.1. If m ≥ 2 is a fixed integer and

n = α0 + α1m + · · · + αjmj

is the base m representation of n (so that 0 ≤ αi ≤ m − 1 for each i), then

bm(mn) ≡

j
i=0

(αi + 1) (mod m).

In this note, we provide a similar modm result for the values cm(mn), where cm(n) is the number ofm–ary partitions of n
with ‘‘no gaps’’ in the parts. More specifically, cm(n) counts the number of partitions of n into powers ofm such that, ifmi is
a part in a partition counted by cm(n), and i is a positive integer, thenmi−1 must also be a part in the partition. For example,
there are six such partitions counted by c3(15):

9 + 3 + 1 + 1 + 1, 3 + 3 + 3 + 3 + 1 + 1 + 1, 3 + 3 + 3 + 1 + 1 + 1 + 1 + 1 + 1,
3 + 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1, 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1,
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.

Note, in particular, that 9 + 1 + 1 + 1 + 1 + 1 + 1 does not appear in the above list because it does not contain the part 3,
and 3 + 3 + 3 + 3 + 3 is missing from the list because it does not contain the part 1.

This family of functions cm(n) is motivated by a recent work of Bessenrodt, Olsson, and Sellers [4] in which the function
c2(n) plays a critical role.

2. The main result

The following theorem provides a complete characterization of cm(mn) modulom:

Theorem 2.1. Let m ≥ 2 be a fixed integer and let

n =

∞
i=j

αimi

be the base m representation of n where 1 ≤ αj < m and 0 ≤ αi < m for i > j.

(1) If j is even, then

cm(mn) ≡ αj + (αj − 1)
∞

i=j+1

αj+1 . . . αi (mod m).

(2) If j is odd, then

cm(mn) ≡ 1 − αj − (αj − 1)
∞

i=j+1

αj+1 . . . αi (mod m).

Remark 2.2. Note that Lemma 2.7 (which appears below) implies that Theorem 2.1 tells us the congruence class of cm(n)
modulom for all n, not just those values of nwhich are divisible by m.

In order to prove Theorem 2.1, we need a few elementary tools. We describe these tools here.
First, it is important to note the generating function for cm(n).

Lemma 2.3.

Cm(q) := 1 +

∞
n=0

q1+m+m2
+···+mn

(1 − q)(1 − qm) . . . (1 − qmn
)
.

Proof. The proof follows from a standard argument from [2, Chapter 1]. �

Next, we wish to find the generating function for cm(mn).

Lemma 2.4.
∞
n=0

cm(mn)qn = 1 +
q

1 − q
Cm(q) (1)
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Proof. Note that Cm(q) can be rewritten as

Cm(q) = 1 +

∞
n=0

qm+m2
+···+mn

(1 − qm) . . . (1 − qmn
)

q
1 − q

= 1 +
q

1 − q
+

∞
n=1

qm+m2
+···+mn

(1 − qm) . . . (1 − qmn
)

·

∞
j=1

qj.

Hence,
∞
n=0

cm(mn)qmn
=

1
1 − qm

+

∞
n=1

qm+m2
+···+mn

(1 − qm) . . . (1 − qmn
)

·

∞
j=1

qjm

=
1

1 − qm
+

qm

1 − qm
·

∞
n=1

qm+m2
+···+mn

(1 − qm) . . . (1 − qmn
)

=
1

1 − qm
+

qm

1 − qm
(Cm(qm) − 1)

= 1 +
qm

1 − qm
+

qm

1 − qm
Cm(qm).

The proof follows by replacing qm by q. �

From Lemma 2.4, we have the following recurrence satisfied by cm(mn).

Lemma 2.5. For n ≥ 1,

cm(mn) = cm(0) + cm(1) + · · · + cm(n − 1).

Proof. Compare coefficients of qn on both sides of the identity in Lemma 2.4. �

Lemma 2.6.

Cm(q) = −q−1
− q−2

− · · · − q−(m−1)
+ (1 + q−1

+ · · · + q−(m−1))

∞
n=0

cm(mn)qmn.

Proof. By Lemma 2.4,
∞
n=0

cm(mn)qmn
= 1 +

qm

1 − qm
Cm(qm).

On the other hand,

Cm(q) = 1 +
q

1 − q
+

∞
n=1

qm+···+mn

(1 − qm) . . . (1 − qmn)
·

q
1 − q

=
1

1 − q
+

q
1 − q

∞
n=0

qm(1+m+···+mn)

(1 − qm) . . . (1 − qm·mn
)

=
1

1 − q
+

q
1 − q

Cm(qm).

Therefore,

Cm(qm) = q−1(Cm(q)(1 − q) − 1)

and so
∞
n=0

cm(mn)qmn
= 1 +

qm−1

1 − qm
(Cm(q)(1 − q) − 1).

Solving for Cm(q) gives the desired result. �

Lemma 2.6 can now be used to prove that the values of the function cm(n) come in m-tuples as described in the next
lemma.
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Lemma 2.7. For all n ≥ 1,

cm(mn) = cm(mn − 1) = cm(mn − 2) = · · · = cm(mn − (m − 1)).

Proof. Compare coefficients of qn on both sides of the identity in Lemma 2.6. �

We now begin the consideration of cm(mn) modulo m by proving the following lemma:

Lemma 2.8. If n ≡ k (mod m) where 1 ≤ k ≤ m, then for all n ≥ 1,

cm(mn) ≡ 1 + (k − 1)cm(n) (mod m).

Proof. By Lemma 2.5,

cm(mn) = cm(0) + cm(1) · · · + cm(n − 1).

Next, we write n = jm + k for some integer j. Then

cm(mn) = cm(0) + cm(1) + · · · + cm(m) + cm(m + 1) + · · · + cm(2m)

...

+ cm((j − 1)m + 1) + · · · + cm((j − 1)m + m) + cm(jm + 1) + · · · + cm(jm + k − 1)
≡ 1 + cm(jm + 1) + · · · + cm(jm + k − 1) (mod m) by Lemma 2.7
≡ 1 + (k − 1)cm(jm + k) (mod m) by Lemma 2.7
= 1 + (k − 1)cm(n). �

Next, we prove an additional lemma involving an ‘‘internal’’ congruence satisfied by cm modulom. It is interesting to note
that a similar result holds for bm(n), the unrestrictedm-ary partition function studied in [3,5,6].

Lemma 2.9. For all n ≥ 0,

cm(m3n) ≡ cm(mn) (mod m).

Proof. By Lemma 2.8, we know

cm(m3n) = cm(m(m2n))
≡ 1 + (m − 1)cm(m2n) (mod m)

= 1 + (m − 1)cm(m(mn))
≡ 1 + (m − 1)(1 + (m − 1)cm(mn)) (mod m)

≡ cm(mn) (mod m). �

Lemma 2.9 enables a significant reduction in the number of cases which will need to be checked when we prove
Theorem 2.1. This is because of the following. Given n written inm-ary notation as

n = αmj
+ βmk

+ · · · + γmr ,

we see immediately that

mn = αmj+1
+ βmk+1

+ · · · + γmr+1,

where α, β, . . . , γ ∈ {1, 2, . . . ,m − 1} and j < k < · · · < r . Thus, we can divide by m2 for as many times as we wish if
j ≥ 2 (because j + 1 ≥ 3). Therefore, we only need to consider the cases j = 0 and j = 1 in what follows.

We are now in a position to prove Theorem 2.1 which provides a characterization of cm(mn) modulom simply based on
them-ary representation of n.

Proof. By Lemma 2.9, we see that if j ≥ 2, then m3
| mn. This means cm(mn) ≡ cm

 n
m


(mod m). Thus, we may assume

j = 0 or j = 1 without loss of generality.
Now we consider two cases (based on the parity of j).
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• Case 1: j is even, so we can assume j = 0. Hence,

cm(mn) ≡ 1 + (α0 − 1)cm(n) (mod m)

= 1 + (α0 − 1)cm(α0 + α1m + α2m2
+ · · ·).

Now sincem > α0 ≥ 1, we may replace α0 by m (thanks to Lemma 2.7). Then the above becomes

cm(mn) ≡ 1 + (α0 − 1)cm((α1 + 1)m + α2m2
+ · · ·) (mod m)

= 1 + (α0 − 1)cm(m((α1 + 1) + α2m + α3m2
+ · · ·))

≡ 1 + (α0 − 1)(1 + α1cm((α1 + 1) + α2m + α3m2
+ · · ·)) (mod m).

Now 1 ≤ α1 + 1 ≤ m, so by Lemma 2.7 we may replace α1 + 1 bym in the above to obtain

cm(mn) ≡ 1 + (α0 − 1)(1 + α1cm(m(α2 + 1) + α3m + · · ·)) (mod m).

Now 1 ≤ α2 + 1 ≤ m, so we may apply Lemma 2.7 again, and the process continues until we hit some αi = 0 at which
time the process terminates. The result is

cm(mn) ≡ 1 + (α0 − 1)(1 + α1(1 + α2(1 + α3 + · · ·))) (mod m)

= α0 + (α0 − 1)
∞
i=1

α1α2 . . . αi

which is equivalent to the first case of Theorem 2.1.
• Case 2: j is odd, so we can assume j = 1. Hence, n ≡ m (mod m), and by Lemma 2.8,

cm(mn) ≡ 1 − cm(n) (mod m)

= 1 − cm


m

∞
j=0

αj+1mj


.

Now Case 1 above is applicable to n′
=


∞

j=0 αj+1mj because 1 ≤ α1 < m. Hence, the desired result follows. �

With the goal of demonstrating the applicability of Theorem 2.1, we compute a few examples.

• Letm = 4, n = 123 = 3 + 2 · 4 + 3 · 42
+ 1 · 43. Then

c4(4 · 123) = c4(492) = 5843 ≡ 3 (mod 4).

This is an example of the case j = 0. Theorem 2.1 asserts that

c4(4 · 123) ≡ 3 + (3 − 1)(2 + 2 · 3 + 2 · 3 · 1) (mod 4)
= 3 + 2 · 14
≡ 3 (mod 4)

as computed above.
• Letm = 5, n = 485 = 2 · 5 + 4 · 52

+ 3 · 53. Then

c5(5 · 485) = c5(2425) = 230358 ≡ 3 (mod 5).

This is an example of the case j = 1. Theorem 2.1 asserts that

c5(5 · 485) ≡ 1 − 2 − (2 − 1)(4 + 4 · 3) (mod 5)
= 1 − 2 − 16
= −17
≡ 3 (mod 5)

as computed above.
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