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characterization of ¢,;(n) modulo m is also based solely on the base m representation of n.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this note, we will focus our attention on congruence properties for the partition functions which enumerate restricted
integer partitions known as m-ary partitions. These are partitions of an integer n wherein each part is a power of a fixed
integer m > 2. Throughout this note, we will let b,;,(n) denote the number of m-ary partitions of n.

As an example, note that there are five 3-ary partitions of n = 9:

9, 3+3+3, 3+3+1+1+1,
3+1+1+1+14+1+1, 1+1+1+1+1+1+1+1+1.

Thus, b3(9) = 5.

In the late 1960s, Churchhouse [5,6] initiated the study of congruence properties of binary partitions (m-ary partitions
with m = 2). Within months, other mathematicians proved Churchhouse’s conjectures and proved natural extensions of his
results. These included Redseth [9] who extended Churchhouse’s results to include the functions b, (n) where p is any prime
as well as Andrews [1] and Gupta [7,8] who proved that corresponding results also held for b;;;(n) where m could be any
integer greater than 1. As part of an infinite family of results, these authors proved that, for any m > 2 and any nonnegative
integer n, by,(m(mn — 1)) = 0 (mod m).

Quite recently, the authors [3] provided the following mod m characterization of b,,(mn) relying solely on the base m
representation of n:
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Theorem 1.1. If m > 2 is a fixed integer and

n=oap+om+---+om

is the base m representation of n (so that 0 < o; < m — 1 for each i), then
J
bu(mn) = [ J(i +1)  (mod m).
i=0

In this note, we provide a similar mod m result for the values c,,(mn), where c,,(n) is the number of m-ary partitions of n
with “no gaps” in the parts. More specifically, ¢, () counts the number of partitions of n into powers of m such that, if m' is
a part in a partition counted by c,, (1), and i is a positive integer, then m'~! must also be a part in the partition. For example,
there are six such partitions counted by c3(15):

94+3+1+1+1, 34+34+3+34+14+1+1, 34+3+3+14+14+14+14+1+1,
3434+14+14+14+14+14+14+14+141, 3414+1+14+14+14+14+14+14+1+1+1+1,
141+14+14+14+14+14+14+14+14+14+14+14+1+1.

Note, in particular, that9+ 14+ 1+ 14 1+ 1+ 1 does not appear in the above list because it does not contain the part 3,
and 3 + 3 + 3 4+ 3 + 3 is missing from the list because it does not contain the part 1.

This family of functions ¢, (n) is motivated by a recent work of Bessenrodt, Olsson, and Sellers [4] in which the function
c,(n) plays a critical role.

2. The main result
The following theorem provides a complete characterization of ¢, (mn) modulo m:

Theorem 2.1. Let m > 2 be a fixed integer and let

o0
n= E a;m'
P

be the base m representation of n where 1 < oj < mand 0 < o; < mfori > j.
(1) If jis even, then
o0
Ccm(mn) = o + (oj — 1) Z Qjt1...04 (mod m).
i=j+1
(2) If jis odd, then

o0
cm(mn) =1—o; — (oj — 1) Z Qjt1...0 (mod m).
i=j+1

Remark 2.2. Note that Lemma 2.7 (which appears below) implies that Theorem 2.1 tells us the congruence class of ¢, (1)

modulo m for all n, not just those values of n which are divisible by m.

In order to prove Theorem 2.1, we need a few elementary tools. We describe these tools here.
First, it is important to note the generating function for c,,(n).

Lemma 2.3.

q1+m+m2+<--+m”

A= —gm)...(1—gm™)’

Cu(@) =1+
n=0

Proof. The proof follows from a standard argument from [2, Chapter 1]. ®

Next, we wish to find the generating function for ¢, (mn).

Lemma 2.4.

> Gn(mmg" =1+ 1 Ca(@) (1)
n=0 q
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Proof. Note that C,,(q) can be rewritten as
m+m2+~-+m" q

cm<q>=1+2( A 1=

.9 mm? 4 m"
q q

=1+ q+;(1—qm) I ;q’

Hence,

m+m +-emh

> en(mm)q™ = —— + Z — Z q¢"
n=0 1- —q )

o mA+m?--+m"
q

_ o, 3
C1—gq"  1—gq" (1—qm)...(1—q™)

n=1
g GCn(@ =1
q" qr

g Cn(g™).

1+

The proof follows by replacing g™ by qg. =

From Lemma 2.4, we have the following recurrence satisfied by ¢, (mn).

Lemma 2.5. Forn > 1,

Cm(mn) = cp(0) + (1) +--- + cp(n —1).

Proof. Compare coefficients of g" on both sides of the identity in Lemma 2.4. W

Lemma 2.6.

G@=—q"=q = —q "V +0+qg"+ -+

Proof. By Lemma 2.4,
Z%(mn)q’“" = T @

On the other hand,

m--4m"
q

q S q
Cn(@) = 1+ + :
! 1-q ;<1—qm>...(1—qmn> 1-gq

1 o) m(1+m+--+m")
_ 4 q Z q _
1-q 1-qizg(A—g™...(1—q™™)
1 q
= —— + ——Cn(@™.
- + 1o p m(@")
Therefore,
Cn(@™) =q ' Cu(@(1—q) — 1)
and so
g
Zcm(mmq’"" =1+ T —mG@ -9 - .

Solving for Cp,(q) gives the desired result. ®

o0
") > en(mn)g™.

n=0

Lemma 2.6 can now be used to prove that the values of the function ¢, (n) come in m-tuples as described in the next

lemma.
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Lemma 2.7. Foralln > 1,

cp(mn) =cp(mn—1) =cu(mn —2) = --- =cu(mn — (m — 1)).

Proof. Compare coefficients of g" on both sides of the identity in Lemma 2.6. W

We now begin the consideration of ¢, (mn) modulo m by proving the following lemma:

Lemma 2.8. If n = k (mod m) where 1 < k < m, then foralln > 1,

cn(mn) =1+ (k— 1cp(n) (mod m).

Proof. By Lemma 2.5,
Cm(mn) = cp(0) + (1) -+ - +cu(n — 1).
Next, we write n = jm + k for some integer j. Then

cm(mn) = cu(0) + cp(1) + -+ + (M) + cu(m+ 1) + - - - 4+ cu(2m)

+en(—Dm+1D+--+cn(G—1m+m)+cp(m+1)+---+cp(im+k—1)
1+cn(m+1)+---+cp(im+k—1) (mod m)byLemma 2.7

=1+ (k—1)c,(m+k) (mod m)byLemma 2.7

1+ k—Dcp(n). |

Next, we prove an additional lemma involving an “internal” congruence satisfied by c¢,; modulo m. It is interesting to note
that a similar result holds for b,;,(n), the unrestricted m-ary partition function studied in [3,5,6].

Lemma 2.9. Foralln > 0,

cm(m>n) = cy(mn)  (mod m).

Proof. By Lemma 2.8, we know

cm(mn) = ¢p(m(m?n))
= 1+ (m — 1cp(m®n) (mod m)
=14+ (m — 1)cp(m(mn))
=14+ (m—-—1)(14 (m— 1)c,(mn)) (mod m)
= cp(mn) (modm). W

Lemma 2.9 enables a significant reduction in the number of cases which will need to be checked when we prove
Theorem 2.1. This is because of the following. Given n written in m-ary notation as

n=oam +Am+. .. +ym,
we see immediately that
mn = am”l + 'Bmk—H N J/mr+1’

wherea, B,...,y € {1,2,...,m—1}andj < k < --- < r. Thus, we can divide by m? for as many times as we wish if
j > 2 (becausej 4+ 1 > 3). Therefore, we only need to consider the cases j = 0 and j = 1 in what follows.

We are now in a position to prove Theorem 2.1 which provides a characterization of c,,(mn) modulo m simply based on
the m-ary representation of n.

Proof. By Lemma 2.9, we see that ifj > 2, then m®> | mn. This means ¢,,(mn) = cn, (%) (mod m). Thus, we may assume
j = 0orj = 1without loss of generality.
Now we consider two cases (based on the parity of j).
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e Case 1:jis even, so we can assume j = 0. Hence,
cm(mn) = 14 (g — 1)cp(n)  (mod m)
=1+ (ag — Dem(ag + oym + azm? + - - 2.
Now since m > g > 1, we may replace oo by m (thanks to Lemma 2.7). Then the above becomes
Cm(mn) = 1+ (g — Dem((0q + DM +ozm? +---)  (mod m)
1+ (@0 — Dem(m((er + 1) + am +ozm® + - )
=14 (0g— DA+ aicm((oq + 1) + oom + asm? + -+ ) (mod m).
Now 1 < oy + 1 < m, so by Lemma 2.7 we may replace «; + 1 by m in the above to obtain
cn(mn) =14 (g — (1 + aycp(m(ay + 1) +azm+--+)) (mod m).

Now 1 < ay + 1 < m, so we may apply Lemma 2.7 again, and the process continues until we hit some «; = 0 at which
time the process terminates. The result is

cm(mn) = 1+ (o — DA +o1(1+a2(1+as+--))) (mod m)

o0
oo + (g — 1)20{1&2 L
i=1

which is equivalent to the first case of Theorem 2.1.
e Case 2:jis odd, so we can assume j = 1. Hence, n = m (mod m), and by Lemma 2.8,

cnp(mn) = 1—c,(n) (mod m)
0 .
=1—c¢n (mZaj+1n1’> .
j=0
Now Case 1 above is applicable ton’ = Z]‘.’:OO aj+1mi because 1 < oy < m. Hence, the desired result follows. ®
With the goal of demonstrating the applicability of Theorem 2.1, we compute a few examples.
eletm=4n=123=3+2-4+3-4>+1-4Then
c4(4-123) = c4(492) = 5843 =3 (mod 4).
This is an example of the case j = 0. Theorem 2.1 asserts that
c4(4-123) =34+ 3-1)(24+2-342-3-1) (mod 4)
=3+2-14
= 3 (mod 4)

as computed above.
eletm=5n=485=2-5+4-5%+3.53 Then

¢5(5 - 485) = ¢5(2425) = 230358 =3 (mod 5).
This is an example of the case j = 1. Theorem 2.1 asserts that
¢5(5-485) =1—-2—(2—1)(4+4-3) (mod>5)
1-2-16
= —17
= 3 (mod 5)

as computed above.
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